CGL: A Domain Specific

Language For Constraint

Generation

Marwa A. Elmenyawi, Mostafa E. A. Ibrahim
Benha Faculty of Engineering
Benha University
Benha, Egypt
Email: marwa.elmenyawi@bhit.bu.edu.eg
mustafa.ibrahim @bhit.bu.edu.eg

Abstract—Integer linear programming solvers are used to
solve a wide variety of problems emerging in diverse domains.
However, automatically generating the integer linear equations
that are used as input for the solvers remains a challenging task.
This paper proposes a domain specific language called CGL that
can be used to describe the equations in a concise manner. In
addition to the proposed language implementation, the syntax and
semantics of CGL are formally given. The paper demonstrates
the usefulness of CGL using a motivating example.

I. INTRODUCTION

Integer linear programming (ILP) solvers have evolved sig-
nificantly and are considered extremely useful helper tools. ILP
solvers are used to solve a wide variety of problems emerging
in diverse domains. Examples include MINOS, CPLEX, etc.
Nevertheless, generating the integer linear equations that are
used as input for the ILP solvers remains a challenging task. Of
course, it is always possible to generate the equations manually
for relatively-small problem instances; however, this approach
is impractical, non-scalable, and error-prone. The goal of this
paper is to present a language that can be used to describe the
equations in a concise manner. The language is simple enough
to be used by beginners (without too much training) and yet
powerful enough to generate all the needed constraints by a
wide variety of applications. The language can also be easily
extended to support more constraints whenever needed.

The proposed language, named Constraints Generation Lan-
guage (CGL) is introduced in the paper as a Domain Specific
Language (DSL). As such, its syntax and semantics are pre-
sented in details. As a generation language, the main usage of
CGL is to be elaborated into standard ILP equations that can be
accepted by existing ILP solvers. One important implication
of CGL’s conciseness and simplicity is that it can be inte-
grated with other tools such that these tools can automatically
generate CGL statements that will later be expanded into ILP
statements.

A declarative programming approach, such as Constraint Pro-
gramming [1] is considered to be a suitable way to describe
the constraints in a natural, declarative and expressive way. A
declarative, very expressive, DSL [2], [3] is created to help the
description of this system. DSLs are lightweight programming
languages used to represent domain specific knowledge using
some sort of syntax. DSLs let you concisely express the
concepts of a particular domain. DSLs have a gain in terms of
expressiveness and ease of use compared to general purpose
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languages for the specific domain as the syntax and semantic
of these DSLs are designed explicitly to describe only the
knowledge of a specific domain. Conversely they are usually
less expressive than general-purpose programming languages
out of their domain.

The rest of this paper is organized as follows: Section II
introduces some basic concepts in order to help understanding
the rest of the paper. Section III demonstrates the phases of
designing the proposed language. Section IV illustrates the
results of implementing the proposed DSL. Finally, Section V
concludes this paper and suggests some future work.

II. BACKGROUND AND RELATED WORK

In this section we provide the necessary background and
informally introduce some important concepts. Namely we
discuss DSLs, constraints modeling tools, and ILP solvers.

A. DSLs

DSLs are attracting a lot of attention in software engi-
neering as well as in programming languages. Banking [4],
robotics [5], [6], and telephony [7] are examples of the
different application on which DSLs are used. Yet, DSLs do
not have the same meaning and objectives depending on the
community considered.

Deursen et al. [2] defined DSL as “a programming language
or executable specification language that offers, through appro-
priate notations and abstractions, expressive power focused on,
and usually restricted to, a particular problem domain”. Markus
Vlter et al. [8] noted that “natural/suitable for the stake holders
who specify that particular concern” are the specification that
the abstractions and notations must follow. DSLs are usually
small, and allow fast development of complete programs,
which solve problems in the domain. As such, DSLs can
be viewed as sets of general, all-encompassing solutions for
problem domains. A DSL has the following characteristics [9]
: 1) The domain is well-defined and central, 2) the notation is
clear, 3) the informal and formal meaning are clear and can
be implemented, and 4) finally the language size is small.

DSL development generally involves the following phases [9] :
Decision, Analysis, Design, and Implementation/Deployment.
The decision phase is one in which the reasons for DSL
development are weighed, with consideration of long-term
goals along with economic and maintenance factors. The
problem domain is defined at the domain analysis phase. The



approaches of DSL design can be characterized by using two
orthogonal dimensions. The first dimension is the relationship
between the DSL and existing languages, while the second
dimension is the formal nature of the design description.
Following the design phase is the implementation/deployment
phase, in which the most suitable implementation approach is
chosen.

B. Constraints Modeling Tools

The modeling tools are divided into four categories as
explained below [10].
Constraint Languages
Such languages are general programming languages and sup-
port a variety of solving techniques. There are different ex-
amples such as ECLiPSe [11] which is classified as logical
language or object oriented languages like Comet [12]. The
flexibility in modeling is the main advantage of such lan-
guages. A rich set of constraints can be provided allowing users
to define their own constraints. The main drawback of such
languages is that users must have enough programming skills
as high level modeling is not supported by these languages.
Constraint Toolkits
Constraint toolkits are libraries in which constraint mod-
eling and solving facilities for programming languages are
provided. Examples of such toolkits are: CPLEX [13] and
Localizer++ [14]. The main drawbacks of such toolkits are
that the high-level modeling is not supported and the host
language may impose some limitations. The advantage of
constraint toolkits is that their users do not need to learn a new
language. In addition, modelers can develop their libraries for
specific domains by using supported data structures of the host
languages.
Mathematical Modeling Languages
Mathematical modeling languages such as OPL [15] and
AMPL [16] support high-level modeling and provide syntax
close to mathematical expressions. As a result, using modeling
languages is easy for non-programmers. They allow users
to use high-level structures, such as records, mathematical
notations, arrays and sets. Furthermore, they allow users to
define the required constraints and functions and apply them
into the model. However, current modeling languages are
solver-dependent and usually force modelers to use a specific
solving method. For example mathematical and constraint
satisfaction techniques are used in OPL.
Specification Languages
Specification languages are very high level and support sets,
relations, and functions. They cannot be used effectively for
combinational and optimization problems due to the large gap
between the conceptual model and the design model [17].

C. ILP Solvers

There are different examples of ILP solvers such as:
CPLEX [13] and MINOS [18]. These are constraint solving
toolkits suitable for ILP models. In this paper, we are interested
in the CPLEX solver using CGL which was designed to
facilitate the generation of CPLEX compatible constraints.
Currently, CPLEX is used by more than 1300 companies,
governmental organizations, and more than 1000 university
researchers.
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D. Motivating Example

C. Burguiere and C. Rochange [19], used the following
equations 1-4 to describe the constraints needed to incorporate
the branch predictor analysis into the Worst Case Execution
Time (WCET) computation with the IPET method.
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Each of these equations represents a relatively large set of
ILP constraints that are hard to obtain manually. For example
equation 1 expands to the following set of ILP constraints as
shown in Equation 5a- 5d:

o =g +xp +3p + 25 (52)
m=a +ay + o+ (5b)
zo = 29 + 25" + 230 + 23’ (5¢0)
x3 = 130 4+ 23" + 230 + 3! (5d)

We designed CGL to allow this set of constraints to be
automatically generated from a description that looks almost
identical to equation 1.

III. CGL DESIGN

This section describes the (CGL) design. CGL is a DSL

for describing constraints using high-level constructs, which
are not typically accepted by ILP solvers such as quantifiers,
summations, and guards (conditions). Figure 1 illustrates the
process to validate and generate the CPLEX constraints from
the proposed DSL. The process is divided into three phases.
First, the parsing phase is responsible for validating the CGL
constraints from a syntactic perspective and constructing an
Abstract Syntax Tree (AST) as an intermediate representation
of the high-level constraints.
Second, the translation phase is responsible for generating
an elaborated AST. The elaborated AST can be seen as
an intermediate representation of the final constraints to be
generated. After the translation high level constructs such
as quantifiers and summations do not exist. Finally, the last
phase is a pretty-printer phase responsible for generating
the final ILP constraints in a printable format that can be
fed to CPLEX for solving. Building the proposed CGL
using the three phases process is advantageous in terms of
extensibility and flexibility. For instance decoupling parsing
from translation allows the following:

° The validation of the CGL input first without
performing the translation.
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° The development of several translators, which

target several programming languages and/or nu-
merical solvers, without modifying the parser.

A. CGL Syntax

In this section, we present the syntax of the proposed
CGL. The syntax is given as Extended Backus-Naur Form
(EBNF) grammar rules in Fig. 2.

CGL syntax

The first production, line 1 of Fig. 2, involves the constraint
non-terminal. It is constituted of three parts: The first part
is an optional part which indicates whether the constraint
includes a quantifier or not. The second part is mandatory
and represents the relational operation (lhs, relop, and rhs).
Finally, the third part is an optional part that shows the
condition. As a result, the constraint can take four forms.
The production at line 2 indicates that the constraint
may have one or more comma-separated quantifiers. Each
quantifier must begin with the forall keyword and the range
of the quantifier is specified in the third production. The
fourth production indicates that one or more conditions
of different types may be applied on the constraint and
the relation between conditions is either a disjunction or a
conjunction. The types of the conditions are specified in the
fifth production. The first alternative of the condition is the
shifting condition which means shifts ID2 to the left by one
bit (the old leftmost bit is therefore discarded) and puts the
value of ID2 as the rightmost bit and this will be related to
ID1 according to RELOP. The other alternative is the leading
condition which means ID3 is the successor of ID1 using the
value of ID2. The lhs can be a number or a string as indicated
in rule 6. A string can take any form that is specified in rule

9 such as z;p or xy 3, Rhs may be an rhsexp or the sum
of multiple rhsexp. Each rhs expression, represented by the
non-terminal rhsexp, is made up of zero or more summation
followed by exp as in rule 10. There are two alternative
for exp. The first one is a string and the other is a sum of
multiple strings.

B. CGL Semantics

In this section, we present the semantics of the proposed
CGL. The main goal of the translation phase is to get rid of the
high level constructs of CGL to generate constraints that would
be compatible with typical ILP solvers. The main constructs
that we need to expand away are quantifiers, summations, and
conditions. The elaboration semantics are defined using the
big-step operational semantics listed in Fig. 3.

Small step semantics and big step semantics are two different
approaches for defining the meaning of programs [20]. There
are two differences between them. The first is the start of
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the evaluation rule while the second is the conduction of the
proofs. In big step, the result is obtained in one step where
in small step the result is obtained after doing several steps.
The main mathematical tool used in operational semantics is
induction [20]. The induction rules have the following general
form:

Antecedents .

——— Conditions

Consequent
A rule has a number of premises (nominator) and one conclu-
sion (denominator). Moreover, a number of conditions (written
to the right of the rule) may be contained in the rule and these
conditions should be satisfied whenever the rule is applied.
Rules with an empty set of premises are called axioms and
inference rules that characterize semantic behavior of the
language constructs [21]. A relation between terms M and
values V is defined as follows: M |} V It can be read as M is
the CGL construct while v is the final result that is obtained
at the end of translating M.
In this paper, we implement a simple operational semantics
directed language as illustrated in Fig. 3. Any constraint is
translated by one of the six rules from 1.1 to 1.4.2 in Fig.
3. The rhs term of the constraint is elaborated, using rule
from 10 to 11.2 according to its form, to get an expanded
list of the constraint meanwhile there is no substitution for
lhs and relop to get the first form of constraint. Rule 1.2.1
represents how to get rid of one quantifier in any constraint.
Getting rid of a quantifier means replacing each ID, appearing
in quantifier, in lhs and substituted rhs with ID range indicated
in quantifier. Multi quantifiers are supported in CGL and
applied over rhs and lhs as seen in rule 1.2.2 as applied in
rule 1.2.1 but it applied many times. In rule 1.3, the aim
is to get rid of the condition construct. There are different
types of conditions as shown in Fig. 2 lines 4 and 5. Any
condition is applied to substituted rhs term to get new rhs terms
which satisfy these conditions. The two rules 1.4.1 and 1.4.2
are the merged forms of all preferred rules i.e. the constraint
contains condition and quantifier construct. In rule 1.4.1, one
quantifier and condition are applied over the rhs and lhs as
in the way explained in rule 1.2.1 and 1.3. Moreover, multi
quantifiers are applied in rhs and lhs as seen in rule 1.4.2.
Getting rid of summation construct in rhs term is reached in
two steps. First, ths is compensated by rhs’ and also rhsexp is
replaced by rhsexp’ as illustrated in rule 10. Second, each exp’s
ID, matched summation ID, is substituted with summation ID
range as shown in rule 11.1. While removing multi-summation
i shown in rule 11.2 like rule 11.1 but it is applied many times
according to number of summation.

IV. IMPLEMENTATIONS AND RESULTS

Our proposed CGL has several applications in computer
science. The lex and yacc tools were used for realizing the
CGL parser. The CGL translator is written and debugged using



1 constraint ::= [quantifier] lhs relop rths [WHERE condition]
2 quantifier := FORALL range | FORALL range , quantifier
3 range = ID BELONG integer TO integer
4 condition := condlist | condlist (AND | OR) condition
5 condlist := ID relop ID SHIFT ID | ID LEADS ID WITH ID
6 1lhs = string | integer
7  string = ID _ repstaff " repstaff
8  repstaff = staff | staff COMMA repstaff
9  staff := ID | integer | ID LEADS integer | ID LEADS ID
10 rhs := rhsexp | rhsexp + rhs
11 rhsexp = {SUM range} exp
12 exp = string | string + exp
13 relop = > > << ]=]!=
Fig. 2. CGL Grammar
1 rhs |} rhs’ 11
lhsreloprhs || lhsreloprhs’ ’
5 rhs | rhs’ 121
forall ID belong intltoint2lhsreloprhs |} {rel : rel € lhs [ID +— int|reloprhs’ [ID — int]whereintl <int < int2}
3 quantifierlhsreloprhs || cs 122
forall ID belong intl toint2 , quantifier lhsreloprhs | {rel : rel € c¢s [ID — int| whereintl < int < int2} -
4 rhswhere condition || rhs’ 13
lhsreloprhs where condition |} lhsreloprhs’ ’
5 rhs |} rhs’
forall ID belong intl toint2 lhs relop rhs where condition || {rel : rel € lhs[ID — int]reloprhs’ [ID — int]}
whereintl < int < int2 and condtion 141
6 quantifierlhsreloprhs | cs
forall ID belong intl toint2 , quantifier lhs reloprhs where condition || {rel : rel € ¢s [ID — int]}
whereintl < int < int2 and condtion 142
7 rhs || rhs’  rhsexp || rhsexp’ 10
rhsexp + rhs || rhsexp’ + rhs’
8 [sum IDbelongintl toint2] exp | X{rel : rel € exp [ID — int] whereintl < int < int2} 1.1
{sumrange} |} el 112
[sumrange] {sumrange} exp | X{rel : rel € el [ID — int] whereintl < int < int2} ’
Fig. 3. CGL Semantics

the C language. Our implementation of CGL is open source
and can be freely downloaded [22].

The CGL is tested with different inputs to ensure that the
output is compliant with the ILP format. Equation 6 is an
example of constraint that contains multiple summations. The
result of removing summation construct from rhs, as indicated
in rule 11.2 of Fig. 3, and substituting it by rhs’ in constraint
rule as illustred in rule 11.2 is indicated in Equ. 7. An example
of getting rid of a quantifier as in rule 1.2.1 is shown in Equ.
9 and the input in Equ.8. While removing multiple quantifiers
as in rule 1.2.2 is indicated in Equ. 11 and input is shown in
Equ.10. The output of applying condition over constraint as
illustrated by rule 1.3 is shown in Equ.13 while the input is
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shown in Equ. 12. Finally, an example that includes removing
condition, quantifier and summation of the constraint is shown
in Equ. 15 and the input in indicated in Equ. 14.

v = sum(z belong 0to 3) sum(y belong4to8) [v_z,y]  (6)

v=1[v_0,4+ v 0,5+ v_0,6 4+ v_0,7
+v_ 0,8 +v_ 1,4+ v_ 1,5+ v_1,6
4o 1,7+ v 1,8 +v_2,4 + v 25 7
$0.2,6 + 0. 2,7+ 02,8+ v.34
+v_3,5 + v_3,6 + v_3,7 + v_3,8]

forall(bbelong 0to3) x_b = sum(pibelong5to7)[x_b A pi] (8)



z0=[2_0A5 4+ 2 0N6+2_0AT7

x 1=[x_1A5 4+ 2 1AN6+2_1AT ©)
2 2= 2AN5+x 2N64+2_2AT

2 3=[x 3N54+23N6+x_3AT|
forall(sbelong0to2), forall(dbelong0tol)m_s — d

1
= sum(pibelong 0to3)[m_s — d A pi] (19)

m0—=0=[m0—=0A04+m0—0A1
+m_0—=0A2+m_0—0A3]
m1l—=0=[m1—=-0A0+m_1—-0A1
+m_1—=0A24+m_1—0A3]
m2—=-0=[m2—-0A0+m_2—-0A1
+m 2—=0A24+m_2—0A3
mO0—=1=[mO0—1A0+m0—1A1
+m_0—=1A24+m_0—1A3]
ml—=1=[m1—-1A0+m_1—-1A1
+m 1—=1A24+m_1—1A3
m2—=1=m2—-1A0+m2—1A1
+m. 2= 1A24m_2—1A3

an

v = sum(z belong 0to 7)sum(y belong 3to 6)

12
sum(dbelong0to1)[v_y A z,djwherey = x shiftd 12

v=[_3AN2,0+v_4A2,1+v 5A3,04+0v_6A31] (13)

forall(bbelong 0to2), forall(pibelong0to2)x_b A pi =
sum(p belong 2 to 3)sum(picbelong 0to 2) (14)
sum(dbelong 0tol)[z_p A pic,d]

where pi = picshiftdcandpleadstopicwithd

2 OAN0=[2_2A0,0+2_3A0,0]

2z 1IAN0=[2_2N0,04+2_3A0,0]

T 2AN0=[r_2A0,0+2_3A0,0]

T OAN1=[z_2N0,14+2_3N0,14+2_3A2,0]

T IAN1=[2z_2N0,14+2_3A0,1+2_3A2,00 (15)
x 2AN1=[2 2N0,142_3AN0,14+2_3A2,0]

x OAN2=[2_2N1,04+2_3AN1,0]

x 1AN2=1[2_2AN1,0+2_3A1,0]

T 2A2=[z_2AN1,0+2_3A1,0]

V. CONCLUSION

In this paper we presented CGL, a DSL for automatic
constraint generation from simple high-level equations.
Formal syntax, expansion semantics, and implementation
details are provided. CGL can be used as illustrated in the
motivating example to generate ILP constraints needed to take
branch prediction into account when estimating the worst case
execution time of a program. CGL can also be used in other
domains as well without any modifications. However, CGL
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provides a proof of concept and can certainly be extended to
support more types of constraints and high-level constructs.
To the best of our knowledge this paper is the first effort to
provide a formal account of such a language.

Another advantage of CGL, is that it can easily be extended
to support several ILP solvers. This extension does not require
any modifications to the CGL syntax or semantics; instead, it
only requires minor tweaks to the pretty-printing step. If such
extension is implemented, CGL users should be able to write
their high level constraints only once (in CGL) and send the
corresponding ILP equations to any ILP solver of their choice
without having to manually re-write them.
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